

Bilirubin Phototherapy Device

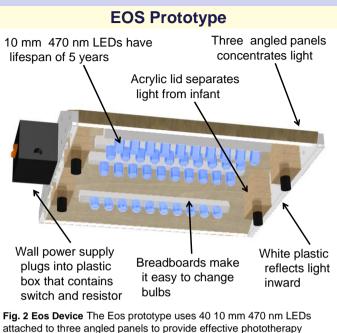
Frank Ko, Nick Ripp, and Sarah Wulf team.icterus@gmail.com Department of Bioengineering, Rice University

Background

- Approximately 60-80% of newborns have neonatal jaundice
- If untreated, could lead to brain damage or death
- Phototherapy is most common treatment for jaundice
- Wavelength of 430 490 nm
- Irradiance at least 30 uW/cm²/nm
- High equipment costs limit treatment in developing countries
- Queen Elizabeth Hospital in Blantyre Malawi uses Blantyre "Hot Cot" as incubator, but available phototherapy treatment is limited

Fig. 1 Blantyre "Hot Cot" The phototherapy device needs to work with the "hot cot" that is currently used in the Queen Elizabeth Hospital

Mission Statement


Develop a phototherapy device for neonatal jaundice treatment to work with the Blantyre "Hot Cot" at the Queen Elizabeth Hospital in Blantyre, Malawi

Design Objectives and Justifications

Design Objective	Target Criterion	
Meet American Association of Pediatric standards	Wavelength: 470 nm Irradiance: ≥ 30 uW/cm²/nm	
Power supply	230 V AC	
Durability	> 5 years	
Easy maintenance	< 5 components	
Safe	Temperature of LED less than 40 °C	
Portable	< 5 lbs	
Inexpensive	~\$200	

•LEDs are inexpensive, have a long lifespan, and do not generate heat

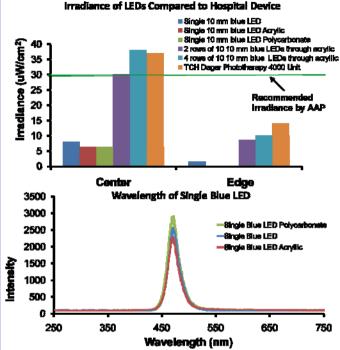

- •Wood is readily available
- •A power adapter converts 230 V AC to 6 V DC

Fig. 3 Wiring Diagram The 40 LEDs are all in parallel to ensure that the array stays lit even if one light goes out. An AC adapter outputs 6 V to the circuit, through a 3 ohm 10 W resistor which limits the current to 25 mA per LED

Design Validation

Parameter	Result
Wavelength Used spectrophotometer	470 nm
Irradiance Used radiometer	36 uW/cm ²
 Temperature Used thermometer to record ambient temperature 	25 °C
•Cost	\$65
•Weight	3 lbs

Fig 4. Irradiance and Wavelength Results The top graph shows the irradiance of various light configurations measured by a radiometer. 40 LEDs provide an equivalent irradiance to the hospital device. The bottom graph shows the wavelength of the LEDs. Acrylic and polycarbonate do not effect wavelength.

Discussion

- Final prototype fulfills design criteria
- •40 LEDs needed for effective irradiance
- Device is more affordable than any other commercially available phototherapy system
- Future research
 - Battery powered system
 - Ability to control intensity of light

References

- Tan KL. Efficacy of fluorescent daylight, blue, and green lamps in the management of nonhemolytic hyperbilirubinemia. J Pediatr 114, 132-7 (1989)
- Vreman, HJ, et al. Light-emitting diodes: a novel light source for phototherapy. Pediatric research 44, 804-9 (1998)

Acknowledgements

We would like to thank Beyond Traditional Border for funding our project, Dr. Maria Oden, Carlos Amaro, Dr. Gerardo Cabrera-Meza, Janet Wheeler, Dr. Richard Schwarz, Nadhi Thekkek, Wen Gao, and Mike Cordray for all the support and advice.

